summaryrefslogtreecommitdiff
path: root/libmoped/libs/sba-1.6/sba_chkjac.c
blob: 95ea18f59f393e9661dbcb022f79d2abbba01329 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/////////////////////////////////////////////////////////////////////////////////
//// 
////  Verification routines for the jacobians employed in the expert & simple drivers
////  for sparse bundle adjustment based on the Levenberg - Marquardt minimization algorithm
////  Copyright (C) 2005-2008 Manolis Lourakis (lourakis at ics forth gr)
////  Institute of Computer Science, Foundation for Research & Technology - Hellas
////  Heraklion, Crete, Greece.
////
////  This program is free software; you can redistribute it and/or modify
////  it under the terms of the GNU General Public License as published by
////  the Free Software Foundation; either version 2 of the License, or
////  (at your option) any later version.
////
////  This program is distributed in the hope that it will be useful,
////  but WITHOUT ANY WARRANTY; without even the implied warranty of
////  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
////  GNU General Public License for more details.
////
///////////////////////////////////////////////////////////////////////////////////

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>

#include "compiler.h"
#include "sba.h"

#define emalloc(sz)       emalloc_(__FILE__, __LINE__, sz)

#define FABS(x)           (((x)>=0)? (x) : -(x))


/* auxiliary memory allocation routine with error checking */
inline static void *emalloc_(char *file, int line, size_t sz)
{
void *ptr;

  ptr=(void *)malloc(sz);
  if(ptr==NULL){
    fprintf(stderr, "SBA: memory allocation request for %u bytes failed in file %s, line %d, exiting", sz, file, line);
    exit(1);
  }

  return ptr;
}

/* 
 * Check the jacobian of a projection function in nvars variables
 * evaluated at a point p, for consistency with the function itself.
 * Expert version
 *
 * Based on fortran77 subroutine CHKDER by
 * Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
 * Argonne National Laboratory. MINPACK project. March 1980.
 *
 *
 * func points to a function from R^{nvars} --> R^{nobs}: Given a p in R^{nvars}
 *      it yields hx in R^{nobs}
 * jacf points to a function implementing the jacobian of func, whose consistency with
 *     func is to be tested. Given a p in R^{nvars}, jacf computes into the nvis*(Asz+Bsz)
 *     matrix jac the jacobian of func at p. Note the jacobian is sparse, consisting of
 *     all A_ij, B_ij and that row i of jac corresponds to the gradient of the i-th
 *     component of func, evaluated at p.
 * p is an input array of length nvars containing the point of evaluation.
 * idxij, rcidxs, rcsubs, ncon, mcon, cnp, pnp, mnp are as usual. Note that if cnp=0 or
 *     pnp=0 a jacobian corresponding resp. to motion or camera parameters
 *     only is assumed.
 * func_adata, jac_adata point to possible additional data and are passed
 *     uninterpreted to func, jacf respectively.
 * err is an array of length nobs. On output, err contains measures
 *     of correctness of the respective gradients. if there is
 *     no severe loss of significance, then if err[i] is 1.0 the
 *     i-th gradient is correct, while if err[i] is 0.0 the i-th
 *     gradient is incorrect. For values of err between 0.0 and 1.0,
 *     the categorization is less certain. In general, a value of
 *     err[i] greater than 0.5 indicates that the i-th gradient is
 *     probably correct, while a value of err[i] less than 0.5
 *     indicates that the i-th gradient is probably incorrect.
 *
 * CAUTION: THIS FUNCTION IS NOT 100% FOOLPROOF. The
 * following excerpt comes from CHKDER's documentation:
 *
 *     "The function does not perform reliably if cancellation or
 *     rounding errors cause a severe loss of significance in the
 *     evaluation of a function. therefore, none of the components
 *     of p should be unusually small (in particular, zero) or any
 *     other value which may cause loss of significance."
 */

void sba_motstr_chkjac_x(
    void (*func)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *hx, void *adata),
    void (*jacf)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *jac, void *adata),
    double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, int ncon, int mcon, int cnp, int pnp, int mnp, void *func_adata, void *jac_adata)
{
const double factor=100.0, one=1.0, zero=0.0;
double *fvec, *fjac, *pp, *fvecp, *buf, *err;

int nvars, nobs, m, n, Asz, Bsz, ABsz, nnz;
register int i, j, ii, jj;
double eps, epsf, temp, epsmch, epslog;
register double *ptr1, *ptr2, *pab;
double *pa, *pb;
int fvec_sz, pp_sz, fvecp_sz, numerr=0;

  nobs=idxij->nnz*mnp;
  n=idxij->nr; m=idxij->nc;
  nvars=m*cnp + n*pnp;
  epsmch=DBL_EPSILON;
  eps=sqrt(epsmch);

  Asz=mnp*cnp; Bsz=mnp*pnp; ABsz=Asz+Bsz;
  fjac=(double *)emalloc(idxij->nnz*ABsz*sizeof(double));

  fvec_sz=fvecp_sz=nobs;
  pp_sz=nvars;
  buf=(double *)emalloc((fvec_sz + pp_sz + fvecp_sz)*sizeof(double));
  fvec=buf;
  pp=fvec+fvec_sz;
  fvecp=pp+pp_sz;

  err=(double *)emalloc(nobs*sizeof(double));

  /* compute fvec=func(p) */
  (*func)(p, idxij, rcidxs, rcsubs, fvec, func_adata);

  /* compute the jacobian at p */
  (*jacf)(p, idxij, rcidxs, rcsubs, fjac, jac_adata);

  /* compute pp */
  for(j=0; j<nvars; ++j){
    temp=eps*FABS(p[j]);
    if(temp==zero) temp=eps;
    pp[j]=p[j]+temp;
  }

  /* compute fvecp=func(pp) */
  (*func)(pp, idxij, rcidxs, rcsubs, fvecp, func_adata);

  epsf=factor*epsmch;
  epslog=log10(eps);

  for(i=0; i<nobs; ++i)
    err[i]=zero;

  pa=p;
  pb=p + m*cnp;
  for(i=0; i<n; ++i){
    nnz=sba_crsm_row_elmidxs(idxij, i, rcidxs, rcsubs); /* find nonzero A_ij, B_ij, j=0...m-1, actual column numbers in rcsubs */
    for(j=0; j<nnz; ++j){
      ptr2=err + idxij->val[rcidxs[j]]*mnp; // set ptr2 to point into err

      if(cnp && rcsubs[j]>=mcon){ // A_ij is nonzero
        ptr1=fjac + idxij->val[rcidxs[j]]*ABsz; // set ptr1 to point to A_ij
        pab=pa + rcsubs[j]*cnp;
        for(jj=0; jj<cnp; ++jj){
          temp=FABS(pab[jj]);
          if(temp==zero) temp=one;

          for(ii=0; ii<mnp; ++ii)
            ptr2[ii]+=temp*ptr1[ii*cnp+jj];
        }
      }

      if(pnp && i>=ncon){ // B_ij is nonzero
        ptr1=fjac + idxij->val[rcidxs[j]]*ABsz + Asz; // set ptr1 to point to B_ij
        pab=pb + i*pnp;
        for(jj=0; jj<pnp; ++jj){
          temp=FABS(pab[jj]);
          if(temp==zero) temp=one;

          for(ii=0; ii<mnp; ++ii)
            ptr2[ii]+=temp*ptr1[ii*pnp+jj];
        }
      }
    }
  }

  for(i=0; i<nobs; ++i){
    temp=one;
    if(fvec[i]!=zero && fvecp[i]!=zero && FABS(fvecp[i]-fvec[i])>=epsf*FABS(fvec[i]))
        temp=eps*FABS((fvecp[i]-fvec[i])/eps - err[i])/(FABS(fvec[i])+FABS(fvecp[i]));
    err[i]=one;
    if(temp>epsmch && temp<eps)
        err[i]=(log10(temp) - epslog)/epslog;
    if(temp>=eps) err[i]=zero;
  }

  free(fjac);
  free(buf);

  for(i=0; i<n; ++i){
    nnz=sba_crsm_row_elmidxs(idxij, i, rcidxs, rcsubs); /* find nonzero err_ij, j=0...m-1 */
    for(j=0; j<nnz; ++j){
      if(i<ncon && rcsubs[j]<mcon) continue; // corresponding gradients are taken to be zero

      ptr1=err + idxij->val[rcidxs[j]]*mnp; // set ptr1 to point into err
      for(ii=0; ii<mnp; ++ii)
        if(ptr1[ii]<=0.5){
          fprintf(stderr, "SBA: gradient %d (corresponding to element %d of the projection of point %d on camera %d) is %s (err=%g)\n",
                  idxij->val[rcidxs[j]]*mnp+ii, ii, i, rcsubs[j], (ptr1[ii]==0.0)? "wrong" : "probably wrong", ptr1[ii]);
          ++numerr;
        }
    }
  }
  if(numerr) fprintf(stderr, "SBA: found %d suspicious gradients out of %d\n\n", numerr, nobs);

  free(err);

  return;
}

void sba_mot_chkjac_x(
    void (*func)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *hx, void *adata),
    void (*jacf)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *jac, void *adata),
    double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, int mcon, int cnp, int mnp, void *func_adata, void *jac_adata)
{
  sba_motstr_chkjac_x(func, jacf, p, idxij, rcidxs, rcsubs, 0, mcon, cnp, 0, mnp, func_adata, jac_adata);
}

void sba_str_chkjac_x(
    void (*func)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *hx, void *adata),
    void (*jacf)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *jac, void *adata),
    double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, int ncon, int pnp, int mnp, void *func_adata, void *jac_adata)
{
  sba_motstr_chkjac_x(func, jacf, p, idxij, rcidxs, rcsubs, ncon, 0, 0, pnp, mnp, func_adata, jac_adata);
}

#if 0
/* Routines for directly checking the jacobians supplied to the simple drivers.
 * They shouldn't be necessary since these jacobians can be verified indirectly
 * through the expert sba_XXX_chkjac_x() routines.
 */

/*****************************************************************************************/
// Sample code for using sba_motstr_chkjac():

  for(i=ncon; i<n; ++i)
    for(j=mcon; j<m; ++j){
      if(!vmask[i*m+j]) continue; // point i does not appear in image j

    sba_motstr_chkjac(proj, projac, p+j*cnp, p+m*cnp+i*pnp, j, i, cnp, pnp, mnp, adata, adata);
  }


/*****************************************************************************************/


/* union used for passing pointers to the user-supplied functions for the motstr/mot/str simple drivers */
union proj_projac{
  struct{
    void (*proj)(int j, int i, double *aj, double *bi, double *xij, void *adata);
    void (*projac)(int j, int i, double *aj, double *bi, double *Aij, double *Bij, void *adata);
  } motstr;

  struct{
    void (*proj)(int j, int i, double *aj, double *xij, void *adata);
    void (*projac)(int j, int i, double *aj, double *Aij, void *adata);
  } mot;

  struct{
    void (*proj)(int j, int i, double *bi, double *xij, void *adata);
    void (*projac)(int j, int i, double *bi, double *Bij, void *adata);
  } str;
};


/* 
 * Check the jacobian of a projection function in cnp+pnp variables
 * evaluated at a point p, for consistency with the function itself.
 * Simple version of the above, NOT to be called directly
 *
 * Based on fortran77 subroutine CHKDER by
 * Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
 * Argonne National Laboratory. MINPACK project. March 1980.
 *
 *
 * proj points to a function from R^{cnp+pnp} --> R^{mnp}: Given a p=(aj, bi) in R^{cnp+pnp}
 *      it yields hx in R^{mnp}
 * projac points to a function implementing the jacobian of func, whose consistency with proj
 *     is to be tested. Given a p in R^{cnp+pnp}, jacf computes into the matrix jac=[Aij | Bij]
 *     jacobian of proj at p. Note that row i of jac corresponds to the gradient of the i-th
 *     component of proj, evaluated at p.
 * aj, bi are input arrays of lengths cnp, pnp containing the parameters for the point of
 *     evaluation, i.e. j-th camera and i-th point
 * jj, ii specify the point (ii) whose projection jacobian in image (jj) is being checked
 * cnp, pnp, mnp are as usual. Note that if cnp=0 or
 *     pnp=0 a jacobian corresponding resp. to motion or camera parameters
 *     only is assumed.
 * func_adata, jac_adata point to possible additional data and are passed
 *     uninterpreted to func, jacf respectively.
 * err is an array of length mnp. On output, err contains measures
 *     of correctness of the respective gradients. if there is
 *     no severe loss of significance, then if err[i] is 1.0 the
 *     i-th gradient is correct, while if err[i] is 0.0 the i-th
 *     gradient is incorrect. For values of err between 0.0 and 1.0,
 *     the categorization is less certain. In general, a value of
 *     err[i] greater than 0.5 indicates that the i-th gradient is
 *     probably correct, while a value of err[i] less than 0.5
 *     indicates that the i-th gradient is probably incorrect.
 *
 * CAUTION: THIS FUNCTION IS NOT 100% FOOLPROOF. The
 * following excerpt comes from CHKDER's documentation:
 *
 *     "The function does not perform reliably if cancellation or
 *     rounding errors cause a severe loss of significance in the
 *     evaluation of a function. therefore, none of the components
 *     of p should be unusually small (in particular, zero) or any
 *     other value which may cause loss of significance."
 */

static void sba_chkjac(
    union proj_projac *funcs, double *aj, double *bi, int jj, int ii, int cnp, int pnp, int mnp, void *func_adata, void *jac_adata)
{
const double factor=100.0, one=1.0, zero=0.0;
double *fvec, *fjac, *Aij, *Bij, *ajp, *bip, *fvecp, *buf, *err;

int Asz, Bsz;
register int i, j;
double eps, epsf, temp, epsmch, epslog;
int fvec_sz, ajp_sz, bip_sz, fvecp_sz, err_sz, numerr=0;

  epsmch=DBL_EPSILON;
  eps=sqrt(epsmch);

  Asz=mnp*cnp; Bsz=mnp*pnp;
  fjac=(double *)emalloc((Asz+Bsz)*sizeof(double));
  Aij=fjac;
  Bij=Aij+Asz;

  fvec_sz=fvecp_sz=mnp;
  ajp_sz=cnp; bip_sz=pnp;
  err_sz=mnp;
  buf=(double *)emalloc((fvec_sz + ajp_sz + bip_sz + fvecp_sz + err_sz)*sizeof(double));
  fvec=buf;
  ajp=fvec+fvec_sz;
  bip=ajp+ajp_sz;
  fvecp=bip+bip_sz;
  err=fvecp+fvecp_sz;

  /* compute fvec=proj(p), p=(aj, bi) & the jacobian at p */
  if(cnp && pnp){
    (*(funcs->motstr.proj))(jj, ii, aj, bi, fvec, func_adata);
    (*(funcs->motstr.projac))(jj, ii, aj, bi, Aij, Bij, jac_adata);
  }
  else if(cnp){
    (*(funcs->mot.proj))(jj, ii, aj, fvec, func_adata);
    (*(funcs->mot.projac))(jj, ii, aj, Aij, jac_adata);
  }
  else{
    (*(funcs->str.proj))(jj, ii, bi, fvec, func_adata);
    (*(funcs->str.projac))(jj, ii, bi, Bij, jac_adata);
  }

  /* compute pp, pp=(ajp, bip) */
  for(j=0; j<cnp; ++j){
    temp=eps*FABS(aj[j]);
    if(temp==zero) temp=eps;
    ajp[j]=aj[j]+temp;
  }
  for(j=0; j<pnp; ++j){
    temp=eps*FABS(bi[j]);
    if(temp==zero) temp=eps;
    bip[j]=bi[j]+temp;
  }

  /* compute fvecp=proj(pp) */
  if(cnp && pnp)
    (*(funcs->motstr.proj))(jj, ii, ajp, bip, fvecp, func_adata);
  else if(cnp)
    (*(funcs->mot.proj))(jj, ii, ajp, fvecp, func_adata);
  else
    (*(funcs->str.proj))(jj, ii, bip, fvecp, func_adata);

  epsf=factor*epsmch;
  epslog=log10(eps);

  for(i=0; i<mnp; ++i)
    err[i]=zero;

  for(j=0; j<cnp; ++j){
    temp=FABS(aj[j]);
    if(temp==zero) temp=one;

    for(i=0; i<mnp; ++i)
      err[i]+=temp*Aij[i*cnp+j];
  }
  for(j=0; j<pnp; ++j){
    temp=FABS(bi[j]);
    if(temp==zero) temp=one;

    for(i=0; i<mnp; ++i)
      err[i]+=temp*Bij[i*pnp+j];
  }

  for(i=0; i<mnp; ++i){
    temp=one;
    if(fvec[i]!=zero && fvecp[i]!=zero && FABS(fvecp[i]-fvec[i])>=epsf*FABS(fvec[i]))
        temp=eps*FABS((fvecp[i]-fvec[i])/eps - err[i])/(FABS(fvec[i])+FABS(fvecp[i]));
    err[i]=one;
    if(temp>epsmch && temp<eps)
        err[i]=(log10(temp) - epslog)/epslog;
    if(temp>=eps) err[i]=zero;
  }

  for(i=0; i<mnp; ++i)
    if(err[i]<=0.5){
      fprintf(stderr, "SBA: gradient %d (corresponding to element %d of the projection of point %d on camera %d) is %s (err=%g)\n",
                i, i, ii, jj, (err[i]==0.0)? "wrong" : "probably wrong", err[i]);
      ++numerr;
  }
  if(numerr) fprintf(stderr, "SBA: found %d suspicious gradients out of %d\n\n", numerr, mnp);

  free(fjac);
  free(buf);

  return;
}

void sba_motstr_chkjac(
    void (*proj)(int jj, int ii, double *aj, double *bi, double *xij, void *adata),
    void (*projac)(int jj, int ii, double *aj, double *bi, double *Aij, double *Bij, void *adata),
    double *aj, double *bi, int jj, int ii, int cnp, int pnp, int mnp, void *func_adata, void *jac_adata)
{
union proj_projac funcs;

  funcs.motstr.proj=proj;
  funcs.motstr.projac=projac;

  sba_chkjac(&funcs, aj, bi, jj, ii, cnp, pnp, mnp, func_adata, jac_adata);
}

void sba_mot_chkjac(
    void (*proj)(int jj, int ii, double *aj, double *xij, void *adata),
    void (*projac)(int jj, int ii, double *aj, double *Aij, void *adata),
    double *aj, double *bi, int jj, int ii, int cnp, int pnp, int mnp, void *func_adata, void *jac_adata)
{
union proj_projac funcs;

  funcs.mot.proj=proj;
  funcs.mot.projac=projac;

  sba_chkjac(&funcs, aj, NULL, jj, ii, cnp, 0, mnp, func_adata, jac_adata);
}

void sba_str_chkjac(
    void (*proj)(int jj, int ii, double *bi, double *xij, void *adata),
    void (*projac)(int jj, int ii, double *bi, double *Bij, void *adata),
    double *aj, double *bi, int jj, int ii, int cnp, int pnp, int mnp, void *func_adata, void *jac_adata)
{
union proj_projac funcs;

  funcs.str.proj=proj;
  funcs.str.projac=projac;

  sba_chkjac(&funcs, NULL, bi, jj, ii, 0, pnp, mnp, func_adata, jac_adata);
}
#endif /* 0 */