1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
|
#!/usr/bin/env python
# coding=utf-8
'''
Various Travelling Salesman Problem algorithms
Author : Guillaume "iXce" Seguin
Email : guillaume@segu.in
Copyright (C) 2007 Guillaume Seguin
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
'''
import pygtk
pygtk.require ("2.0")
import gtk
import gobject
gtk.gdk.threads_init ()
import random
import math
import cairo
import threading
import datetime
MAX_X = 500 # Max X (virtual) coordinate
MAX_Y = 500 # Max Y (virtual) coordinate
OFFSET_X = 20 # Left & right offsets (for drawing purpose)
OFFSET_Y = 20 # Top & bottom offsets (for drawing purpose)
CITY_RADIUS = 3 # Radius of the visual city points
SHOW_NAMES = True
INIT_RANDOM = "Random"
INIT_GREEDY = "Greedy"
INIT_GREEDY_BEST = "Greedy (Best)"
INITS = [INIT_RANDOM, INIT_GREEDY, INIT_GREEDY_BEST] # Init methods choices
ALGOS = ["2opt", "MonteCarlo", "Annealing"] # Algorithms choices
COUNTS = [10, 25, 50, 100, 250] # City counts choices
# Default settings
DEFAULT_INIT = INIT_RANDOM
DEFAULT_ALGO = "Annealing"
DEFAULT_COUNT = 50
class Color:
'''Helper object for color handling'''
def __init__ (self, r, g, b):
self.r = r
self.g = g
self.b = b
CITY_COLOR = Color (0.9, 0, 0) # Red
TEXT_COLOR = Color (0, 0, 0) # Black
PATH_COLOR = Color (0, 0, 0.8) # Blue
def distance (c1, c2):
'''Compute the distance between two points'''
return math.sqrt ((c2.x - c1.x) ** 2 + (c2.y - c1.y) ** 2)
def draw_map (cities, cr):
'''Draw a map of points on a Cairo context'''
global CITY_COLOR, TEXT_COLOR, SHOW_NAMES
def draw_point (city):
'''Helper function to draw a point'''
cr.arc (city.x, city.y, CITY_RADIUS, 0, 2 * math.pi)
cr.fill ()
def draw_name (city):
'''Helper function to draw a point label'''
cr.move_to (city.x + 6, city.y + 6)
cr.show_text ("%d" % city.i)
cr.fill ()
cr.set_operator (cairo.OPERATOR_OVER)
cr.set_source_rgb (CITY_COLOR.r, CITY_COLOR.g, CITY_COLOR.b)
map (draw_point, cities.values ())
if not SHOW_NAMES:
return
cr.set_source_rgb (TEXT_COLOR.r, TEXT_COLOR.g, TEXT_COLOR.b)
map (draw_name, cities.values ())
def draw_path (cities, path, cr):
'''Draw a path on a Cairo context'''
global PATH_COLOR
prev = path[0]
list = path[1:] + [prev]
length = 0
cr.set_operator (cairo.OPERATOR_OVER)
cr.set_source_rgb (PATH_COLOR.r, PATH_COLOR.g, PATH_COLOR.b)
cr.set_line_width (1)
cr.move_to (cities[prev].x, cities[prev].y)
for i in list:
cr.line_to (cities[i].x, cities[i].y)
cr.stroke ()
class City:
'''Helper object for points map handling'''
i = 0
x = 0
y = 0
def __init__ (self, i):
'''Initialize object (generate random coordinates)'''
self.i = i
self.x = OFFSET_X + random.uniform (0, MAX_X)
self.y = OFFSET_Y + random.uniform (0, MAX_Y)
class Path (list):
'''Helper object that automagically computes the path length'''
context = None
def __init__ (self, context, list):
'''Initalize list & object'''
self.context = context
for i in list:
self.append (i)
self.compute_length ()
def compute_length (self):
'''Compute length, the computation is pretty straight-forward'''
prev = self[0]
list = self[1:] + [prev] # Add the first element of the list to
# the end to close the path
length = 0
for i in list:
length += self.context.dists[prev][i]
prev = i
self.length = length
class Context:
'''Helper object handling the city map and distances computations, and
featuring some basic methods such as nearest neighbours (a.k.a. greedy)
algorithm'''
count = 0
dists = {}
map = {}
def __init__ (self, delayed = False, count = DEFAULT_COUNT):
'''Initialize object'''
self.count = count
if not delayed:
self.prepare ()
def prepare (self):
'''Prepare context data'''
self.generate_map ()
self.compute_dists ()
def generate_map (self):
'''Generate a map of random points'''
# FIXME: maybe should we check for duplicates?
self.map = {}
for i in range (0, self.count):
self.map[i] = City (i)
def compute_dists (self):
'''Compute the distances array'''
self.dists = {}
# Only compute half of the array, it's symetric
for i in range (0, self.count):
self.dists[i] = {}
for j in range (i, self.count):
self.dists[i][j] = distance (self.map[i], self.map[j])
for i in range (0, self.count):
for j in range (0, i):
self.dists[i][j] = self.dists[j][i]
def draw_to_cr (self, cr, path = None):
'''Draw map & path (if any) to the given Cairo context'''
if path:
draw_path (self.map, path, cr)
draw_map (self.map, cr)
def draw_png (self, filename, path = None):
'''Dump map & path (if any) to a PNG file'''
surface = cairo.ImageSurface (cairo.FORMAT_ARGB32,
MAX_X + 2 * OFFSET_X,
MAX_Y + 2 * OFFSET_Y)
cr = cairo.Context (surface)
cr.set_operator (cairo.OPERATOR_CLEAR)
cr.paint ()
self.draw_to_cr (cr, path)
surface.write_to_png (filename)
def nearest_neighbours (self, start = 0):
'''Nearest neighbours (a.k.a. greedy) algorithm'''
def reduce_nearest (d1, d2):
'''Reduce function to find the nearest point of a list'''
if d1[1] < d2[1]: return d1
else: return d2
path = [start]
while len (path) < len (self.map):
current = path[-1]
dists = self.dists[current].items ()
dists = filter (lambda (i, dist): i not in path, dists)
next = reduce (reduce_nearest, dists)
path.append (next[0])
return Path (self, path)
def nearest_neighbours_best (self):
'''Nearest neighbours algorithm applied to each city of the list'''
best = None
for i in self.map.keys ():
path = self.nearest_neighbours (start = i)
if not best or path.length < best.length:
best = path
return best
def random_path (self):
'''Random path generator'''
path = range (0, self.count)
random.shuffle (path)
return Path (self, path)
'''
A few notes about the way algorithms should be implemented:
* The class name should look like "Algo_Name" where Name is the name that will
be displayed in the GUI
* The "run" method is what will be run by the running thread
* The "run" method must use the "yield" mechanism to raise the current path as
it goes on. This lets the running thread nicely interrupt execution if needed,
and lets it quickly halt.
'''
class Algo:
'''Base class for algorithm, please extend me!'''
context = None
need_init = True
def __init__ (self, context):
'''Initialize object'''
self.context = context
def run (self):
'''Implement this in your algorithm subclass'''
class Algo_2opt (Algo):
'''Classic 2opt algorithm'''
def run (self, path = None):
'''Algorithm main loop'''
if not path:
path = self.context.nearest_neighbours_best ()
best = path
while True:
yield path
path = self.do_2opt (best)
if path.length < best.length:
best = path
def do_2opt (self, path):
'''Do a simple transformation: given two points i and j, reverse the
path between i and j (e.g. [0, 1, 2, 3, 4, 5] with i = 1 and j = 4 becomes
[0, 1, 3, 2, 4, 5]. This is better than just exchanging two points because the
former only breaks 2 links while the latters breaks 4.'''
i, j = random.sample (path, 2)
if i < j:
segment = path[i + 1:j]
segment.reverse ()
return Path (self.context, path[:i + 1] + segment + path[j:])
else:
'''If i > j, loop around the list'''
segment = path[i + 1:] + path[:j]
segment.reverse ()
return Path (self.context, path[j:i + 1] + segment)
class Algo_Annealing (Algo_2opt):
'''Simulated annealing algorithm'''
t0 = 10.0 # Initial temperature
updates = 0 # Accepted updates counter
def run (self, path = None):
'''Algorithm main loop'''
self.t0 = min (self.t0, self.t0 * self.context.count / 50)
self.updates = 0
if not path:
path = self.context.nearest_neighbours_best ()
current = best = path
while True:
yield current
next = self.do_2opt (current)
if next.length < best.length:
current = best = next
self.updates += 1
elif next.length <= current.length \
or self.accept_change (current, next):
current = next
self.updates += 1
def accept_change (self, current, next):
'''Choose if a worse path is accepted anyway, this is the key of the
simulated annealing algorithm: the path will be accepted if the result of
exp (- (next length - current length) / temperature) is greater than a random
floating point number, where temperature evolves according to a given law
based on the current number of iterations (or so)'''
delta = next.length - current.length
p0 = random.random ()
t0 = 1
p = math.exp (- delta / self.temp ())
if p0 <= p:
return True
else:
return False
def temp (self):
'''Temperature law: t = t0 - accepted_updates * 0.001 (min'd to 0.1)'''
return max (self.t0 - self.updates * 0.001, 0.1)
class Algo_MonteCarlo (Algo_2opt):
'''2opt-based algorithm with Monte-Carlo perturbations'''
unsuccessful_loops = 0
MAX_UNSUCCESSFUL_LOOPS = 1000
def run (self, path = None):
'''Algorithm main loop'''
if not path:
path = self.context.nearest_neighbours_best ()
current = path
while True:
yield path
path = self.do_2opt (current)
if path.length < current.length:
current = path
self.unsuccessful_loops = 0
else:
'''If we did not find a better result, increment this'''
self.unsuccessful_loops += 1
'''After MAX_UNSUCCESSFUL_LOOPS, perturbate the current path'''
if self.unsuccessful_loops > self.MAX_UNSUCCESSFUL_LOOPS:
path = current = self.perturbate (current)
self.unsuccessful_loops = 0
def perturbate (self, path):
'''Perturbate a path by exchanging two points'''
i, j = random.sample (xrange (len (path)), 2)
path[j], path[i] = path[i], path[j]
return Path (self.context, path)
class AlgoThread (threading.Thread):
'''Threading running a given algorithm'''
context = None
algo = None
gui = None
canvas = None
init = False
terminate = False
time = None
runner = None
best = None
def __init__ (self, context, algo, gui, canvas, init = None):
'''Initialize the thread'''
threading.Thread.__init__ (self)
self.context = context
self.algo = algo
self.gui = gui
self.canvas = canvas
self.init = init
def update_best (self, path, time):
'''Update GUI to reflect the finding of a better solution'''
gtk.gdk.threads_enter ()
if not path: length = None
else: length = path.length
self.gui.update_best (length, time)
self.canvas.redraw (path = path, damage = True)
gtk.gdk.threads_leave ()
def run (self):
'''Main thread loop: generate a path (randomly or not, according to
the current settings) and run the algorithm on it until the stop () function
is called.'''
start = datetime.datetime.now ()
if not self.runner:
self.time = datetime.timedelta ()
self.update_best (path = None, time = None)
if self.algo.need_init:
if self.init == INIT_GREEDY_BEST:
for i in self.context.map:
if self.terminate:
self.time = self.time + self.get_time (start)
path = self.context.nearest_neighbours (start = i)
if not best or path.length < best.length:
self.best = path
elif self.init == INIT_GREEDY:
self.best = self.context.nearest_neighbours ()
else:
self.best = self.context.random_path ()
self.update_best (path = self.best,
time = self.get_time (start))
self.runner = self.algo.run (self.best)
else:
self.runner = self.algo.run ()
while not self.terminate:
path = self.runner.next ()
if not self.best or path.length < self.best.length:
self.best = path
self.update_best (path = self.best,
time = self.get_time (start))
self.time = self.time + self.get_time (start)
def get_time (self, start):
'''Return timedelta since a given date'''
return self.time + datetime.datetime.now () - start
def resume (self):
'''Resume thread: since we can't start a Thread twice, let's copy
its data into a new Thread, start the new one and return it'''
thread = AlgoThread (self.context, self.algo, self.gui, self.canvas,
self.init)
thread.runner = self.runner
thread.best = self.best
thread.time = self.time
thread.start ()
return thread
def stop (self):
'''Stop thread'''
self.terminate = True
class AlgoCanvas (gtk.DrawingArea):
'''Canvas widget for displaying maps & paths'''
context = None
surface = None
path = None
def __init__ (self, context):
'''Initialize widget'''
gtk.DrawingArea.__init__ (self)
self.context = context
self.connect ("expose-event", self.expose)
self.set_size_request (MAX_X + 2 * OFFSET_X, MAX_Y + 2 * OFFSET_Y)
def redraw (self, path = None, damage = False):
'''Redraw surface using the given path (if any)'''
self.path = path
self.surface = cairo.ImageSurface (cairo.FORMAT_ARGB32,
MAX_X + 2 * OFFSET_X,
MAX_Y + 2 * OFFSET_Y)
cr = cairo.Context (self.surface)
cr.set_operator (cairo.OPERATOR_CLEAR)
cr.paint ()
self.context.draw_to_cr (cr, self.path)
if damage:
'''Damage widget if requested'''
self.queue_draw ()
def expose (self, widget, event):
'''Handle expose events: copy the saved surface to the new widget
Cairo context, clipping the draw area if needed'''
cr = self.window.cairo_create ()
if not self.surface:
self.redraw ()
cr.set_source_surface (self.surface)
cr.rectangle (event.area.x, event.area.y,
event.area.width, event.area.height)
cr.clip ()
cr.paint ()
return False
class AlgoGui (gtk.Window):
'''GUI for testing TSP algorithms'''
context = None
algo = None
thread = None
canvas = None
init_box = None
algo_box = None
count_box = None
gen_button = None
start_button = None
stop_button = None
best_label = None
config_label = None
def __init__ (self):
'''Initialize GUI'''
global INITS, ALGOS, COUNTS
gtk.Window.__init__ (self)
self.context = Context (delayed = True) # Prepare Context
self.algo = None
# GTK stuff
self.set_title ("TSP Algorithm test GUI")
self.set_position (gtk.WIN_POS_CENTER)
self.connect ("delete-event", gtk.main_quit)
box = gtk.VBox ()
self.add (box)
self.canvas = AlgoCanvas (self.context) # Our canvas
alignment = gtk.Alignment (0.5, 0.5, 0, 0)
alignment.add (self.canvas)
box.pack_start (alignment, False, False)
# Settings
hbox = gtk.HBox ()
alignment = gtk.Alignment (0.5, 0.5, 0, 0)
alignment.add (hbox)
box.pack_start (alignment, False, False)
# Init methods
self.init_box = gtk.combo_box_new_text ()
map (self.init_box.append_text, INITS)
self.init_box.set_active (INITS.index (DEFAULT_INIT))
hbox.pack_start (self.init_box, False, False)
# Algorithms
self.algo_box = gtk.combo_box_new_text ()
map (self.algo_box.append_text, ALGOS)
self.algo_box.set_active (ALGOS.index (DEFAULT_ALGO))
hbox.pack_start (self.algo_box, False, False)
# City counts
self.count_box = gtk.combo_box_new_text ()
map (lambda i: self.count_box.append_text ("%d cities" % i), COUNTS)
self.count_box.set_active (COUNTS.index (DEFAULT_COUNT))
hbox.pack_start (self.count_box, False, False)
# Show labels button
names_button = gtk.CheckButton (label = "Show labels")
names_button.connect ("toggled", self.toggle_show_names)
names_button.set_active (True)
hbox.pack_start (names_button, False, False)
# Buttons
hbox = gtk.HBox ()
alignment = gtk.Alignment (0.5, 0.5, 0, 0)
alignment.add (hbox)
box.pack_start (alignment, False, False)
# Generate button
self.gen_button = gtk.Button ("Generate")
self.gen_button.connect ("clicked", self.generate)
hbox.pack_start (self.gen_button, False, False)
# Start button
self.start_button = gtk.Button ("Start")
self.start_button.connect ("clicked", self.start)
self.start_button.set_sensitive (False)
hbox.pack_start (self.start_button, False, False)
# Resume button
self.resume_button = gtk.Button ("Resume")
self.resume_button.connect ("clicked", self.resume)
self.resume_button.set_sensitive (False)
hbox.pack_start (self.resume_button, False, False)
# Stop button
self.stop_button = gtk.Button ("Stop")
self.stop_button.connect ("clicked", self.stop)
self.stop_button.set_sensitive (False)
hbox.pack_start (self.stop_button, False, False)
# Informative labels
self.best_label = gtk.Label ()
self.update_best (length = None, time = None)
box.pack_start (self.best_label, False, False)
self.config_label = gtk.Label ()
self.update_config (config = False)
box.pack_start (self.config_label, False, False)
def toggle_show_names (self, button):
'''Toggle SHOW_NAMES setting & damage canvas'''
global SHOW_NAMES
SHOW_NAMES = button.get_active ()
self.canvas.redraw (path = self.canvas.path, damage = True)
def get_count (self):
'''Get currently selected city count'''
count = self.count_box.get_active_text ().split (" ")[0]
return int (count)
def get_algo (self):
'''Get currently selected algorithm'''
return self.algo_box.get_active_text ()
def get_init (self):
'''Get currently selected init method'''
return self.init_box.get_active_text ()
def generate (self, *args):
'''Generate a new map'''
self.thread = None
self.context.count = self.get_count ()
self.context.prepare ()
self.start_button.set_sensitive (True)
self.resume_button.set_sensitive (False)
self.canvas.redraw (damage = True)
def start (self, *args):
'''Run algorithm'''
global INITS
self.stop ()
self.update_config ()
self.algo = eval ("Algo_%s" % self.get_algo ()) (self.context)
self.thread = AlgoThread (self.context, self.algo, self, self.canvas,
init = self.get_init ())
self.thread.start ()
self.gen_button.set_sensitive (False)
self.start_button.set_sensitive (False)
self.resume_button.set_sensitive (False)
self.stop_button.set_sensitive (True)
def resume (self, *args):
'''Resume algorithm execution'''
if not self.thread or self.thread.isAlive ():
return
self.thread = self.thread.resume ()
self.gen_button.set_sensitive (False)
self.start_button.set_sensitive (False)
self.resume_button.set_sensitive (False)
self.stop_button.set_sensitive (True)
def stop (self, *args):
'''Halt algorithm'''
if self.thread:
self.thread.stop ()
self.thread.join (0.1)
if self.thread.isAlive ():
gobject.timeout_add (100, self.stop)
return
self.gen_button.set_sensitive (True)
self.start_button.set_sensitive (True)
self.resume_button.set_sensitive (True)
self.stop_button.set_sensitive (False)
def update_best (self, length, time):
'''Update best solution length label'''
if not length:
self.best_label.set_markup ("<b>Best length yet</b>: N/A")
return
length = round (length, 2)
time = round (time.seconds + float (time.microseconds) / 1000000, 2)
label = '''<b>Best length yet</b>: %s (found in %ss)'''
self.best_label.set_markup (label % (length, time))
def update_config (self, config = True):
'''Update current configuration label'''
if not config:
self.config_label.set_markup ("<b>Configuration</b>: N/A")
return
config = '''<b>Configuration</b>: %d cities, using %s algorithm and \
%s init'''
self.config_label.set_markup (config % (self.get_count (),
self.get_algo (),
self.get_init ()))
if __name__ == "__main__":
gui = AlgoGui ()
gui.show_all ()
try:
gtk.main ()
except KeyboardInterrupt:
pass
gui.stop ()
|